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Abstract

In this paper we explore, extend and simplify the localization of the description
ability of the well-established MPEG-7 (SCD, CLD and EHD) and MPEG-7-like
(CEDD) global descriptors, which we call the SIMPLE family of descriptors.
Sixteen novel descriptors are introduced, that utilize four different sampling
strategies for the extraction of image patches to be used as points-of-interest.
Designing with focused attention for content based image retrieval tasks, we
investigate, analyse and propose the preferred process for the definition of the
parameters involved (points detection, description, codebook sizes and
descriptors’ weighting strategies). The experimental results conducted on four
different image collections reveal an astonishing boost in the retrieval
performance of the proposed descriptors compared to their performance in their
original global form. Furthermore, they manage to outperform common SIFT and
SURF based approaches while they perform comparably if not better, against
recent state-of-the-art methods that base their success on much more complex
data manipulation.
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Introduction
Extracting a meaningful descriptor from an image is a central problem for a variety of
computer vision problems. Depending on the application, a successful vectorization of an
image’s depictions can be utilized to solve matching or correspondence problems. How-
ever, the design strategy of a description mechanism for problems like classification, object
recognition or tracking must be adjusted accordingly. The impact of factors such as the
kind of features employed, computational complexity, storing requirements and scalability
can vary significantly in different computer vision domains.

In this paper we are interested in exploring the combination of features that best describe
an image with respect to its visual properties and its visual content, specifically focusing on
Content Based Image Retrieval (CBIR) tasks. When designing descriptors for CBIR one
must take into account the ever growing data involved in the process. Image collections are
growing exponentially in a variety of domains (medicine, private life, industry, journalism,
tourism etc.), making the need for an effective and yet efficient retrieval system, imperative.

However, trying to define what makes a useful and meaningful retrieval for the user re-
mains still unsolved and is most likely not an engineering problem. Different benchmarking
datasets try to cover various retrieval scenarios with diverse types of images and different
levels of semantics in query to result relevance interpretation. The complexity of the prob-
lem is evident just by thumbing through the great variety of proposed implementations that
address the issue [1, 2, 3, 4, 5, 6, 7, 8].
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Briefly making a historical overview, the first attempts to vectorize image contents pro-
posed extracting global image features such as color, texture and shapes that are calculated
over the entire image. The foremost advantage of extracting global features is the low cost
of the single-feature space computations. Moreover, a global vector representation is a very
effective strategy for certain retrieval task. For instance, trying to classify natural-scene de-
picting images, where a number of blue uniform patches that are part of a lake are equally
important as highly textured parts depicting leafage. Annotating an image solely by a global
feature vector, however, often leads to a rather generalized outline of its visual information.

As collections and retrieval scenarios became more demanding, global feature methods
were overshadowed and often also outperformed by methods that employed local features
(LF). Among the most popular Points of Interest (POI) detectors are corner detectors Har-
ris, Shi-Tomasi and FAST [9, 10, 11] and blob detectors SIFT [12], SURF [13], to name
a few. Using POIs, the representation of the image is mapped into a high dimensional
local feature space. In applications like Simultaneous Localization And Mapping (Visual
SLAM [14]), panorama construction, object recognition and tracking, these extracted POIs
are used directly to find one-to-one matches between depictions. In CBIR, however, direct
usage is impractical even with today’s available computational resources. Typically, hun-
dreds or even thousands of LF are extracted per image. To reduce memory cost and speed
up image matching, the features are quantized through some aggregation procedure.

A widely and extensively used approach is the Bag-Of-Visual-Words (BOVW) model
which originated from the document retrieval field. Because of its simplicity, flexibility,
and effectiveness, it has been adopted in various applications such as video classification,
3D shape categorization and image retrieval [15, 16, 17]. The BOVW model first constructs
a codebook using a clustering algorithm over all detected LF in an image collection. Each
cluster represents a visual word while the total number of clusters is typically predefined.
Then, an image is represented as a histogram of the visual words and each bin of the his-
togram is weighted with a tf-idf score or its variants. The aggregation model, manages to
achieve a vast reduction of the high dimensionality that LF introduce, but simultaneously
burdens the implementation with a number of free parameters such as predicting the ap-
propriate codebook size and the preferred weighting strategy.

Of course, this type of feature quantization introduces the respective loss of the discrim-
inative ability of the features. Thus, over the years numerous improvements and alterna-
tives have been proposed. The soft quantization and soft assignment techniques proposed
in [18] and [19] respectively, reduce the quantization error of the original BOVW model
paying a price in terms of memory overload and higher searching time. Alternatively, the
Fisher Vector [20] uses the Gaussian Mixture Model to train the codebook and quantizes
the features by calculating the probability of a feature falling into the Gaussian Mixture.
Different approaches like Hamming Embedding [21] improve the model by generating bi-
nary signatures coupling visual words and providing thus additional information to filter
false positives. Recently an alternative to the BOVW model, the Vector of Locally Aggre-
gated Descriptors (VLAD) [22] has gained the community’s attention. Given a codebook,
instead of creating a vector of frequencies, the VLAD model creates a vector of differ-
ences, as distances, between a feature and the cluster’s center. VLAD manages to speed up
the aggregation step but leads to high dimensional vector representations per image, which
can affect the scalability of a method. Finally, authors in [23] focus on a multilayer deep
learning architecture to represent high-level features in an effective compact manner, while
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[24, 25, 26] emphasise the need for domain-adaptive dictionary learning and the benefits
of effectively fusing multiple information sources.

Acknowledging the fact that there will probably never be a solution that fits all, we are
interested in exploring the benefits of revisiting, reusing and combining strategies proposed
from both global feature and local feature approaches, seen under the light and understand-
ing of nowadays knowledge. In this paper we propose 16 novel local features’ descriptors
that adapt on the hybrid approach first introduced in [27], named SIMPLE. In its essence,
the SIMPLE scheme suggests a framework that localizes the description mechanism of
older well established global descriptors. Originally the SIMPLE features were a combi-
nation of the SURF detector, used to sample textured image patches in multiple scales,
and the MPEG-7 SCD, CLD, EHD [28] and the MPEG-7-like CEDD [29, 30] global de-
scriptors, used for describing the patches. One of the key elements of the scheme is that it
allows for indirect combination of texture and color information, eliminating the need for
complicated fusion techniques. Finally, having conducted over 2000 experiments for this
work, we put all the obtained data to good use and statistically analyse the impact that the
varying BOVW set-ups have on the robustness of the retrieval performance.

Related Work
The MPEG-7 family of global descriptors has been widely studied and referenced in the
literature. The compact and effective representation of images that they provide has intro-
duced a great number of improved techniques that build upon the original standard. Here,
we will focus on attempts that propose their utilization combined with additional local
information of some kind.

The fusion of various low-level MPEG-7 descriptors is proposed in [31] for content-
based image classification. A ‘merging’ fusion combined with a support vector machine
(SVM) classifier, a back-propagation fusion with a KNN classifier and a Fuzzy-ART neu-
rofuzzy network strategies are explored, that can be extended in matching the segments
of an image with predefined object models. The fusion (baseline fusion and score fusion)
of MPEG-7, SIFT, and SURF is also explored and evaluated in [32] to address content-
based event search. The detailed results conclude that the MPEG-7, SIFT, and SURF are
broadly comparable, and also highly complementary. In [33] a classification-driven simi-
larity matching is presented and evaluated for the biomedical image domain. Various low-
level global colour, edge, and texture related features are extracted (CLD, EHD, CEDD,
FCTH [34]) and utilized along with a visual concept feature [35] extracted using the ‘bag
of concepts’ model (that comprises of local colour and texture patches) achieving thus, the
generation of feature vectors in different levels of abstraction.

Authors in [36] present a grid-based framework for image retrieval where the images
are partitioned into blocks. Localized feature representations employing the MPEG-7, HS
and the HSV color histogram descriptor [28] are extracted and achieve better results com-
pared to global techniques. In [37] authors index a collection of images combining local
and global features. The method extracts SURF local features and five MPEG-7 descrip-
tors (CS, CL, SC, HT, EH) as global features. Each image is associated with six text fields,
one corresponding to the bag-of-features obtained from the SURF descriptor and five sur-
rogate text representations, one for each MPEG-7 descriptor. These segments, form the
basic units on which search is performed. Finally, authors in [38] use cluster correlograms
to combine MPEG-7 descriptors with spatial information, for image categorization. They
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employ fixed partitioning and salient points schemes to extract image patches and use four
MPEG-7 descriptors to represent them. Similar patterns are aggregated into a cluster code-
book. A correlogram is then constructed from the spatial relations between visual keyword
indices in an image, in order to obtain high-level information about the relational context.
Four 2D signatures (one for each MPEG-7 descriptor) are assigned per image, which leads
to a feature dimension of 4m2, where m is the number of clusters used in the clustering
algorithm.

Overall, the most commonly followed strategy to combine global and local information
usually relies on some late fusion method that severely slows down the retrieval process.
Fixed partitioning of images and region based image segmentation are also presented but
when applied, not only add a new level of complexity but also tend to suffer in domain
specific tasks, were background information and foreground are not easily dissociated. Our
proposed implementation of localized MPEG-7 descriptors is designed around the fact that
CBIR tasks employ a large number images for indexing and retrieval. Thus, efficiency, low
complexity and compactness of the final representation is of great importance.

Extending the SIMPLE family of descriptors
The SIMPLE family of descriptors proposed in [27] is a combination of the SURF local-
points detector and three of the global MPEG-7 descriptors along with the MPEG-7-like
global CEDD descriptor, to produce new local features specifically designed for CBIR.
The SURF detector is employed to locate and extract salient image patches, whose size
is determined as a squared area (s× s) according to the scale (S) that the points were de-
tected in. The method proceeds by applying the aforementioned global descriptors on the
detected patches, as if they were standalone images. This results in four different kinds of
local features that were tested for CBIR using the BOVW model. In this paper we are not
only interested in exploring different combinations of detectors and descriptors, but also
in analysing the results, so as to gain a deeper understanding of the preferred attributes to
incorporate in a CBIR scheme, according to the application’s and the user’s requirements.

The image datasets

The employed dataset is one of the most important factors when building a CBIR system.
Even the most successful implementations reported, cannot guarantee high performance for
any kind of datasets. In an effort to draw useful conclusions concerning the preferred type
of point detection and description mechanisms in a generalized manner and simultaneously
minimize the case that good achieved performances might have to do with specificities of
the database, we decided to employ four diverse kind of datasets.

The UKBench image database [39] consists of 10,200 images, separated in 2,250 groups
of four images each. Each group includes images of a single object placed in the cen-
ter of the image, captured from different viewpoints and lighting conditions. This dataset
represents a much requested retrieval scenario in real-life applications for industrial and
commercial purposes. The collection presents high in-class variability and the information
concerning localized aspects of the images’ content is of great importance. Thus, local
features are reported to perform better in this collection than global descriptors do.

The UCID image collection [40] consists of 1,338 images on a variety of topics includ-
ing natural scenes and man-made objects, both indoors and outdoors. All the UCID images
were subjected to manual relevance assessments against 262 selected images. UCID, in-
cludes several query images where the ground truth consists of images with similar visual
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concept to the query image, without necessarily the co-occurrence of the same objects. In
contrast to the UKBench dataset, the visual content of the images that form this database
favours the performance of the global descriptors [41].

The INRIA Holidays dataset [21] consists of 1,491 photos, depicting a variety of natural
and manmade scenes, captured mainly during personal holidays. The challenges that a
retrieval system has to deal with are rotations, viewpoint and illumination changes, blurring
etc. The Holidays dataset is accompanied by a ground truth for 500 queries along with the
images that represent the same scene for each one of them.

Finally, the Zurich Building Database (ZuBuD) [42] consists of two separate parts.
201 buildings were captured, from five different viewpoints each, forming a dataset of
1,005 images of Zurich’s city building. The queries’ part contains 115 additional images
of lower resolution, depicting some of the buildings of the main dataset captured from a
different viewpoint and sometimes under different weather conditions. For each query, only
the images that represent the same building are considered relevant.

For readability purposes we focus and provide analytic experimental results on the first
two datasets (UKBench and UCID) and proceed with the presentation and comments for
the rest of the employed collections in a more condensed form.

Detecting points of interest

Four different points-of-interest detection mechanisms were explored in this paper. In all
cases the objective is to extract square image regions, hereinafter referred to as image
patches. During the detection stage, we are only interested in locating the position (x, y) of
the centres of the image patches and deciding their size. Their description will be handled
in a subsequent step, utilizing descriptors formerly used in global features’ techniques.

• First we employed the SURF detector. The SURF detector uses the determinant
of the Hessian to detect both the location and the scale of blob-like structures. The
Hessian matrix is approximated, using a set of box-type filters. The scale-space is
analyzed by up-scaling the filter size rather than iteratively reducing the image size.
Independently of their size, these approximate second-order Gaussian derivatives
are evaluated using integral images, significantly speeding up the whole process.
The responses are stored in a blob response map, and local maxima are detected and
refined using quadratic interpolation.

• The second detector we employed, was the SIFT detector. The key points are
searched in a scale-space by applying the difference of Gaussians function and locat-
ing the maxima and the minima to a series of re-sampled and smoothed images. We
define our image patches’ size (s x s) according to the scale (S) they were detected.

The first two detectors both focus and locate blob like structures in images. This means that
the obtained patches will contain interesting achromatic information. Even if we do not pro-
ceed and describe this achromatic information, but instead focus on the colour information
contained in the patches, we still achieve to indirectly combine texture and colour infor-
mation. We are describing colour information with textural attention, i.e. apply a colour
descriptor on image regions where something interesting is happening texture-wise. We
used the SIFT and SURF emguCV detector implementations, following the default param-
eter initializations.

However, CBIR tasks are not always oriented towards object recognition and direct
matching. Some applications request retrieval results to be similar in a more conceptual
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fashion. Image regions that may not carry textural information should still be vectorized.
For instance, blue, uniform patches of sky or sea depicting images, could boost the re-
trieval performance of a system that is ranking landscape images to a provided query. Thus,
inspired by the principle that global features CBIR systems are designed around, we im-
plemented and tested two more detectors: a uniform, random, multiscale image patches’
generator and a random patches’ extractor where the selection of the centres (x, y) of the
patches follow the Gaussian distribution.

• The Random patches’ generator, as its name implies, randomly selects x and y
positions in the images, to mark square regions of pixels. The probability of the
selection, both for x and y, follows the uniform distribution (for a visual, kindly refer
to Fig.1, third column). The sizes of the regions were decided as follows: the smallest
patch size (hereinafter referred to as Reference Patch, RP) was set to 40 x 40 pixels,
so as to be aligned with the highest patch size limitation, that is introduced by the
CEDD descriptor (kindly refer to the next Section). From there, we employ a scaling
factor (s f ) to produce larger patches of sizes RP ∗ s f ×RP ∗ s f pixels. More details
about the s f and the total number of patches in this implementation, can be found in
the Experimental Set-ups Section.

• The GaussRandom patches’ generator, operates as the Random generator pre-
sented above, only this time, the probability of the selection of an x, and the selection
of a y follow two separate univariate Gaussian distributions with the mean values set
at the center of the x and y range, respectively. This means that the x,y centres are
more densely sampled in the centre of the image and become gradually sparser as
we move to the outer parts of the image (for a visual, kindly refer to Fig.1, fourth
column). The standard deviation (σ ) is automatically adapting to the image dimen-
sions of each dataset so that a 2σ standard deviation includes 95.5% of the samples,
while a 3σ covers 99.7%. If for instance the image has a 400× 600 resolution the
first Gaussian will have a meanvalue = 400

2 and a σ = 400
6 , while respectively the

second Gaussian has a meanvalue = 600
2 and a σ = 600

6 .
We employed this type of sampling, driven by the fact that, usually, the main theme
of the image or the dominant objects, both in queries and collections, are the centred
depictions.

The global descriptors employed to be localized

Four different global descriptors from the literature were selected to be localized. Three
of them originate from the MPEG-7 family of global descriptors (SCD, CLD and EHD)
[28], and the fourth global descriptor (CEDD) originally presented in [29] is an MPEG-7-
like descriptor, in the sense that its implementation principles are strongly inspired by the
MPEG-7 standard.

We proceed focusing on the specific attributes of each method that differentiate the ex-
perimental setups and will allow us to get some insight into what type of descriptors are
best suited for CBIR, under different circumstances. All the selected descriptors were pre-
ferred because they are well established, widely accepted, they are easy to implement and,
most importantly, represent the images’ features in a compact and quantized manner. Since
we are particularly interested in evaluating local features for CBIR, it is intuitive that com-
pactness of the vectors and quantized local feature representations, are imperative.

Image collections can vary from a few thousands to millions of images. Thus, the more
compact the descriptor, the more likely it is for the retrieval system to be able to manage
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great amounts of data on limited computational resources. Furthermore, the scope of an
image retrieval oriented local descriptor, is to provide small vector distances for visually
similar patches. Approaches in the literature, however, utilize local features that were orig-
inally developed for different tasks. The goal of a local feature intended, for instance, for
Simultaneous Localization And Mapping (SLAM) or panorama construction, is to describe
each point of interest as uniquely and detailed as possible, so as to achieve a one-to-one
matching of points in different images. Retrieval systems that employ such local features
are often forced to fail, due to many possible matching candidates whose vector distance is
not apparent.

On the other hand, quantizing features means that image properties (like detected colours
or edges) are categorized in a preset number of explicitly defined possible variations. When
employing such features to describe the image, we get a more abstract image signature.
This abstract representation allows for faster and safer comparisons of similarities between
images. Especially in CBIR tasks, where the objective is not to find the one and only sim-
ilar image, but a set of k top correctly retrieved results, this discrete domain of features
minimizes classification errors [43].

Taking into account that colour is a very important element for image retrieval tasks
[3, 41, 29, 38], we begin our description of the detected patches employing two MPEG-7
colour descriptors.

• The Scalable Colour Descriptor (SCD) [28] is essentially a colour histogram in a
fixed HSV colour space, achieved through a uniform quantization of the space. A
total of 256 coefficients is used to represent the descriptor. Since it is a histogram,
it is rotation and transformation invariant. Moreover, due to the quantization of the
colour space, SCD presents good tolerance to change of lightning conditions and hue
variations.

• The Colour Layout Descriptor (CLD) [28] represents the spatial distribution of
the colour in images. In order to incorporate the spatial relationship, each image
patch needs to be divided into 8 x 8 discrete blocks. Any image patches too small
for this type of division are ignored in our implementation, as if they were never
detected. This descriptor quantizes the space domain, allowing some slight sifts and
rotations to be flattened and also presents good tolerance to changes in lightning
conditions and hue variations because it represents each block by calculating the
dominant colour, thus, indirectly quantizing the colour space as well.

Next, we employ an edge descriptor and a descriptor that combines both texture and colour
information, so as to widen the spectrum of tested approaches and gain a generalized out-
look on local features and their retrieval effectiveness.

• The Edge Histogram Descriptor (EHD) [28] represents the spatial distribution of
five types of edges in the image. A given image patch is subdivided into 4 x 4
sub-image patches and a local edge histogram is computed. Again, in our imple-
mentation any image patch that is too small to undergo such a division is ignored
as though never detected. This descriptor quantizes the edge information into five
broadly grouped edge types that vary with intervals of 45 degrees, resulting in fea-
tures that present commensurate rotation invariance.

• The Color and Edge Directivity Descriptor (CEDD) [29] utilizes both colour and
edge information in a compact, quantized manner. The original CEDD implementa-
tion demands a division of the image patch into 40 x 40 blocks of at least 2 x 2 pixels,
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each. However the latest version of CEDD[1], adapts to the description of smaller
sized images and according to the image’s size in question, defines a minimum of 20
x 20 blocks’ division of at least 2 x 2 pixels each. For the edge information extrac-
tion it adopts the five filters presented in the MPEG-7 EHD descriptor along with an
additional Non-Edge filter and it introduces a heuristic pentagon diagram to classify
each block into one or more edge types. The colour information is represented by
a 24-bins colour histogram where each bin corresponds to a preset colour. This de-
scriptor, just as the EHD, presents rotation invariance of 45 degrees and due to the
quantized colour space that it uses, it presents also tolerance to change in lightning
condition and hue variations.

Utilizing the SIMPLE local features in a CBIR system
By combining the four different detection mechanisms and localizing the description abil-
ity of the four global descriptor presented in the previous section, we produced four sets
of local features. Using the SURF detector: SIMPLE srf-SCD, srf-CLD, srf-EHD, srf-
CEDD. Using the SIFT detector: SIMLE sft-SCD, sft-CLD, sft-EHD, sft-CEDD. Us-
ing the Random detector: SIMPLE rnd-SCD, rnd-CLD, rnd-EHD, rndCEDD. Using the
Gaussian Random detector: SIMPLE gaussRnd-SCD, gaussRnd-CLD, gaussRnd-EHD,
gaussRnd-CEDD. In order to test them in CBIR tasks, we employed the Bag-of-Visual-
Words (BOVW) model to calculate vector image representations and went on calculating 8
weighted equivalents of those vectors by applying an equal number of weighting schemes.

Please note that we deliberately chose to employ the simplest form of the model and not
any of the improvements that have been recently proposed in the literature because our goal
is to calculate the performance of the local features and their ability to capture the images’
contents. The proposed local features can be employed for CBIR using any other retrieval
system framework, but this exceed the scope of this paper.

The Bag-of-Visual-Words model

The BOVW model uses an unsorted set of discrete Visual Words (VW) to represent the
contents of an image. It is directly inspired by the bag-of-words (BOW) model, which
was first introduced for text classification. In our implementation, when all SIMPLE local
features have been detected in a collection of images, we randomly select a sample to be
clustered via the k-means classifier into a preset number of clusters (Visual Words), so as to
form the Codebook. Each image from the collection is then represented by a histogram of
the frequencies of the Visual Words that it contains. When a query is set to the system, its
features are also extracted and matched to the VWs of the Codebook and the VW histogram
is calculated. This is the simplest form of the BOVW model.

The Weighting Schemes

We incorporate the common textual term weighting schemes in the BOVW model. The
first weighting factor is the raw Term Frequency (t ft,d) where a weight is assigned to ev-
ery term (t) in the codebook according to the number of occurrences in a document (d).
A second factor for assigning weights is the Document Frequency (d ft ). This time d ft is
defined as the number of documents that contain the term t. Many times, the inverse doc-
ument frequency id ft = log(N/d ft) of a collection is used to determine weights, where

[1]The latest version of CEDD can be found in http://tinyurl.com/CEDD-Descriptor
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N is the total number of documents in the collection. In our case, ”term” equals ”Visual
Word”, and ”document” equals ”image”. Last, a normalization can be performed to quan-
tify the similarity between two documents in terms of the cosine similarity of their vector
representation.

The SMART notation is a compact way to describe combinations of weighting schemes
in the form of (d.d.d). The first letter denotes the t f weighting method, the second letter
denotes the d f weighting method, and the third letter specifies the normalization used. Ta-
ble 1 presents the SMART notation for several t f .id f variants. For more details concerning
the weighting schemes adoption, kindly refer to [41].

Table 1 SMART NOTATION

tf df Normalization
n(natural): tft,d n(no): 1 n(none): 1

l(log): 1+ log(tft,d) t(idf): log(N/dft) c (cos):1/
√

w2
1 + . . .+w2

M

In our implementation, after generating the VW histogram for every image (collection
and query) through the BOVW model, the vectors are recalculated using the 8 weighting
schemes (kindly refer to Table 1).

Experimental Set-ups
Sampling Parameters

The SIFT detector produces on average 1000 patches-of-interest per image on the UK-
Bench collection, 1400 on the UCID collection, 1000 on Holidays and 1600 on ZuBuD.
Respectively, SURF detects on average 600 patches on the UKBench, 800 on the UCID
collection, 650 on Holidays and 1850 on ZuBuD, per image. However, the usability of
the patches is determined by their size, due to the limitation that the description methods
introduce. The percentage of unusable patches can not be foreseen, since it depends on
the image collections involved. Through our tests we found that statistically about 20% of
SIFT points and about 10% of SURF points are unusable for our implementations.

Another interesting observation made through our tests concerning the SIFT and SURF
point detectors has to do with their distribution on the images. Since they are both blob
detectors, the total number and the centers’ coordinates of the points, vary significantly
depending on the depiction. Uniform areas of the images are disregarded completely from
these detectors. Thus, we had images with less than 100 points and others with more than
4000.

In the second and third column of Figure 1 we present scatter plots of the x,y centers for
SIFT and SURF. The first two rows are example images from the UCID collection, while
in the third row the results report the accumulative points over the whole collection. In the
first example (Eiffel tower) even though 1513 points are detected, almost no information
will be considered from the upper half of the image (sky). This is a significant loss since
the depicted landmark, being an outdoors location, is in most cases captured with this blue
background. The loss of useful information is even more dramatic in our second example
(a person running on the beach). Using the SIFT and the SURF points we gain almost no
information about the surroundings (brawn uniform sand, green see and blue sky).

Finally, when plotting the points detected over the whole collection we see that spatially
every possible x,y was picked as a point center. What is more interesting, is the distribution
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of those coordinates. In this multi-theme collection [2] the x and y variables present no
particular distribution pattern when examined per image, but when collectively studied
they clearly follow a Gaussian-like distribution.

Figure 1 Sampling distributions of the four employed methods: (a) first two rows are example
images taken from UCID, (b) the accumulative distribution over all images on UCID.

The aforementioned findings and detected drawbacks inspired the two proposed random
patches’ generators. As discussed earlier in the ”Detecting points of interest” subsection,
this type of sampling allows us to utilize information from parts that would be disregarded
from blob detectors. Furthermore, the constant number of samples per image (i) produces
final vector representations that do not need normalization in order to be compared via
a distance measure and (ii) can be pre-defined so as to be manageable depending on the
available resources and the scale of the application.

For the two random sampling strategies, in order to maintain the order of magnitude
suggested both from SIFT and SURF for the employed collections, we set the number of
extracted patches to be a total of 600 per image (i.e 150 samples per scale). Taking into
account the highest size limitation introduced by CEDD, we define the minimum patch
size to consist of 40 x 40 pixels. This will ensure that all image patches will be usable
for description by all four of our employed description methods. Next, we scale the min-
imum/reference patch size by a scaling factor s f , to produce different patch sizes. The
upper patch size limit is related to the employed images. We did not want to produce image
patches that would be greater that 1/3 of the smallest image dimension. Thus, the greatest
s f used, was s f = 3 resulting into 120x120 pixels image patches. Having an upper and a
lower size limit, allowed us to decide on further scaling factors for in-between patch sizes.
The s f for both Rnd and GaussRnd generators were 1, 1.6, 2.3 and 3, and the respective
patch sizes were 40x40, 64x64, 92x92 and 120x120.

[2]The results are in-line for UKBench and Holidays, while for the ZuBuD dataset the accu-
mulative distribution presents less of a curve but rather a more flat distribution.
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BOVW Parameters

Taking into consideration limitations in computational resources and desired efficiency, we
set our four different codebook sizes to consist of 32, 128, 512 and 2048 VWs, respectively.
The codebooks are generated by forwarding a random 10% sample of the extracted features
to a k-means classifier. We weight the histograms of VWs with eight weighting schemes
and conduct the similarity search between query and dataset using the Euclidean distance
measure.

Querying Mode

For the evaluation of the features’ retrieval effectiveness we employ four different image
collections (UKBench, UCID, Holidays, ZuBuD) that vary both in theme and relevance
interpretation, so as to minimize the probability of good performances occurring due to
collection specificities. Concerning the querying mode, for the UKBench collection, the
first 250 images of the first 250 groups were used as queries. The ground truth consists
of the four images belonging to the same group as the query. For the UCID collection the
first 262 images were used as queries. By design, all the UCID images, were subjected
to manual relevance assessments against 262 selected images, creating 693 ground truth
image sets for performance evaluation. For the Holidays and the ZuBuD collections we also
followed the default querying mode, using the 500 and 115 query images that accompany
the datasets, respectively.

Baseline Formation and Evaluation Metrics

In order to ensure fair and direct comparison we reimplemented and tested under the same
retrieval set-ups five well established local features descriptors from the literature (SURF,
SIFT, opponent-SIFT [5] ORB [44] and BRISK [45] [3]) and since our method is a com-
bination of local POIs detectors and global features descriptors, we also conducted exper-
iments for 7 global descriptors (using the img(Rummager) [47] application and their de-
fault settings), including of course the original MPEG-7 SCD, CLD, EHD.[4] To evaluate
the systems’ performance, we calculate the Mean Average Precision (MAP, max at 1) and
the Average Normalized Modified Retrieval Rank (ANMRR, max at 0). For the UKBench
and the UCID collections we also provide the precision-at-position (P@k, with k = 4 for
UKBench and k = 10 for UCID, max at 1) [49] evaluations.

In each experiment, we assumed as baseline the best performance that can be obtained
employing a non-SIMPLE descriptor of those we reimplemented. However, in order to
allow the readers to compare and get a better perspective of the achieved performances we
also include state-of-the-art methods from the recent literature that propose improvements
on various different aspects of a retrieval system.

Experimental Results
In total we performed 16SIMPLE ×4Codebooks×8WS×4Collections = 2048 experiments for the
evaluation of the proposed local features. In this section we will provide the evaluation of
the retrieval performances of the proposed SIMPLE descriptors and discuss the impact of

[3]Local Features descriptors were tested using the recently proposed GRIRe [46] open
source framework and the respective OpenCV implementation of the descriptors.
[4]The MPEG-7 descriptors availiable on img(Rummager) follow the implementation found
in the LIRE [48] open source library.
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the weighting schemes. Please note that the experimental results will be focused on the first
two datasets (UKBench and UCID) for readability reasons. A more condense presentation
of the results is followed for the Holidays and ZuBuD collections. The experimental results
and the drawn conclusions are in line for all four employed datasets.

We prepared separate tables of results for the tested non-SIMPLE and SIMPLE de-
scriptors. Table 2 presents the performances evaluated using MAP, of 7 Global Features’
(GF) and 5 x (4 Codebooks) Local Features’(LF) descriptors from the literature all re-
implemented and tested in the same retrieval system for fair comparison with the SIMPLE
descriptors. The respective performance evaluations by P@4, P@10 and ANMRR can be
found in [27].

Tested on the UKBench collection, the best performing non-SIMPLE descriptor with a
MAP score of 0.8159 was the SURF LF descriptor with a codebook size of 512 VWs. This
will be considered the ”baseline” UKBench result for further reference. On the UCID image
collection, CEDD, a global descriptor (as expected, due to the nature of the depictions in
this dataset), with a MAP score of 0.6748, will be the baseline performance for comparison
with our SIMPLE descriptors.

Tables 3 and 4 summarize the experimental results of all 16 proposed SIMPLE descrip-
tors on the UKBench and the UCID dataset, respectively. The tables consist of four sub-
tables, for the facilitation of the reader. Every sub-table shows the performance evaluations
by MAP, P@k and ANMRR, per detector used, for all four descriptors, in all four code-
book sizes. The weighting scheme (WS) reported in the tables was the highest performance
among the 8 WS.

Table 2 Experimental results of reimplemented non-SIMPLE descriptors on UKBench and UCID.

UKBench Collection UCID Collection
Descriptor Size WS MAP Descriptor Size WS MAP
SURF(baseline) 512 l.n.n 0.8159 CEDD(baseline) Global 0.6748
CEDD Global 0.8026 SURF 512 l.n.n 0.6513
SURF 128 l.n.n 0.7634 SIFT 512 l.n.n 0.6261
Oppo. SIFT 128 n.n.c 0.7475 SURF 2048 l.n.c 0.6259
Oppo. SIFT 512 n.n.c 0.7390 Oppo.SIFT 2048 n.t.c 0.6244
SIFT 512 l.n.n 0.6984 Oppo.SIFT 512 n.n.c 0.6072
SURF 2048 n.c.c 0.6911 SIFT 2048 n.n.c 0.6046
SIFT 128 l.n.n 0.6903 SURF 128 n.n.c 0.5927
SIFT 2048 n.n.c 0.6638 Oppo.SIFT 128 n.n.c 0.5872
Oppo. SIFT 32 n.n.n 0.6613 SIFT 128 n.n.c 0.5849
BTDH[50] Global 0.6468 SURF 32 l.n.n 0.5492
SURF 32 l.n.n 0.6377 SIFT 32 n.n.c 0.5453
MPEG-7 CLD Global 0.6181 MPEG-7 CLD Global 0.5361
Oppo. SIFT 2048 n.t.c 0.5926 BTDH Global 0.5353
SIFT 32 l.n.c 0.5683 MPEG-7 EHD Global 0.5326
ORB 512 n.n.c 0.5371 Oppo.SIFT 32 n.n.n 0.5240
MPEG-7 EHD Global 0.5271 MPEG-7 SCD Global 0.4998
ORB 2048 n.t.c 0.4913 ORB 512 l.n.n 0.4929
ORB 128 n.n.c 0.4830 ORB 2048 n.n.c 0.4913
MPEG-7 SCD Global 0.4716 ORB 128 n.n.c 0.4642
Color Hist. Global 0.4133 BRISK 128 l.n.n 0.4636
BRISK 128 l.n.n 0.3904 BRISK 32 n.n.n 0.4532
ORB 32 n.n.n 0.3880 ColorHist. Global 0.4443
BRISK 32 n.n.n 0.3550 Tamura Global 0.4411
BRISK 512 l.n.n 0.3463 BRISK 2048 n.t.c 0.4360
Tamura[51] Global 0.3130 ORB 32 n.n.c 0.4360
BRISK 2048 n.n.c 0.3096 BRISK 512 l.n.n 0.4345

Results on UKBench: Overall, 10 out of the 16 proposed SIMPLE descriptors managed
to surpass the baseline experiment in this collection. In all cases, the best performing com-
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Table 3 Experimental Results of all 16 SIMPLE descriptors on the UKBench dataset. MAP results in
bold fonts mark performances that surpass the baseline performance. Underlined results mark the
highest performance achieved per detector

SIFT detector SURF detector

Size WS MAP P@4 ANMRR WS MAP P@4 ANMRR
2048 n.t.c 0.6402 0.5360 0.2769 l.t.c 0.8280 0.7580 0.1207
512 l.t.c 0.8139 0.7710 0.1562 l.t.c 0.8964 0.8670 0.0879
128 l.n.n 0.7911 0.7350 0.1695 l.n.c 0.8665 0.8260 0.1104

CEDD

32 n.n.n 0.6797 0.2741 0.2878 l.n.n 0.7806 0.7250 0.1771
2048 n.t.c 0.7195 0.6230 0.2058 l.t.c 0.8730 0.8180 0.0871
512 l.t.c 0.8696 0.8350 0.1058 l.t.c 0.9145 0.8960 0.0713
128 l.n.n 0.8764 0.8350 0.0961 l.t.c 0.8941 0.8640 0.0858

SCD

32 l.n.n 0.7649 0.6890 0.1822 l.n.n 0.7956 0.7420 0.1672
2048 n.n.c 0.6327 0.5340 0.2847 l.n.c 0.7693 0.6890 0.1706
512 l.t.c 0.7699 0.7180 0.1874 l.t.c 0.8446 0.8160 0.1333
128 l.n.n 0.7649 0.7200 0.1950 l.n.n 0.8112 0.7640 0.1576

CLD

32 n.n.n 0.5944 0.5430 0.3575 n.n.n 0.6857 0.6290 0.2725
2048 l.n.c 0.2712 0.2600 0.7052 n.n.c 0.4093 0.3720 0.5422
512 l.n.c 0.2689 0.2560 0.7075 n.n.c 0.4276 0.4010 0.5321
128 n.n.n 0.2708 0.2640 0.7054 n.n.n 0.3972 0.3760 0.5590

EHD

32 n.n.n 0.2752 0.2640 0.6954 n.n.n 0.3570 0.3330 0.5987

Rnd (600 samples) GaussRnd (600 samples)

Size WS MAP P@4 ANMRR WS MAP P@4 ANMRR
2048 l.t.c 0.9183 0.8890 0.0683 l.t.c 0.9245 0.9030 0.0655
512 l.t.c 0.9146 0.8870 0.0707 l.t.c 0.9227 0.8940 0.0624
128 l.n.c 0.8892 0.8460 0.0886 l.t.c 0.8895 0.8540 0.0894

CEDD

32 l.n.n 0.7993 0.7410 0.1632 l.n.n 0.7894 0.7300 0.1685
2048 l.t.c 0.9268 0.8980 0.0573 l.t.c 0.9254 0.9020 0.0608
512 l.t.c 0.9186 0.8950 0.0674 l.t.c 0.9218 0.8930 0.0638
128 l.t.c 0.8876 0.8420 0.0888 l.t.c 0.8917 0.8580 0.0865

SCD

32 l.n.c 0.7884 0.7260 0.1704 l.n.c 0.8095 0.7560 0.1582
2048 l.t.c 0.8831 0.8480 0.1024 l.t.c 0.8893 0.8560 0.0926
512 l.n.c 0.8718 0.8400 0.1069 l.t.c 0.8715 0.8360 0.1059
128 l.n.c 0.8184 0.7730 0.1545 l.n.c 0.8347 0.7890 0.1345

CLD

32 l.n.n 0.6455 0.5860 0.2978 l.n.n 0.6851 0.6200 0.2577
2048 l.t.c 0.6235 0.5780 0.3378 l.t.c 0.6185 0.5830 0.3425
512 l.n.c 0.5629 0.5270 0.3919 l.n.c 0.5788 0.5310 0.3762
128 l.n.n 0.4944 0.4610 0.4551 l.n.n 0.5053 0.4640 0.4408

EHD

32 l.n.n 0.3166 0.3070 0.6017 n.n.c 0.4153 0.3810 0.5340

bination involved the SCD description method. When detecting patches using the SIFT de-
tector, and due to the percentage of non-usable patches, only SIMPLE sft-SCD (which uses
a descriptor that does not introduce minimum patch size limitations) manages to present a
performance improvement, compared to the baseline. However, compared to their global
equivalences, SIMPLE CEDD, SCD and CLD descriptors, perform vastly better. A degra-
dation in performance is reported for SIMPLE sft-EHD. This leads to the assumption, that
employing a detection mechanism that searches for interesting texture patches of one type,
and then describes them with texture descriptors of another type, is an abortive attempt.

SIMPLE descriptors that employ the SURF detector, perform significantly better than
SIFT. SIMPLE srf-SCD and srf-CEDD 512, in particular, achieve an almost perfect re-
trieval score for all evaluation metrics. Please note that, compared to their global equiva-
lences, SIMPLE srf-(CEDD, SCD, CLD) perform comparable -if not better- even with a
tiny codebook size of 32 VWs. SIMPLE srf-EHD, showed better results than the SIFT-
based implementation, but still did not manage to surpass the EHD-global performance,
corroborating the aforementioned assumption concerning texture based descriptors on tex-
ture based detectors.

Impressive results were obtained employing the Rnd and GaussRnd patches’ genera-
tors. As reported in Table 3, we scored comparable performances to the SIMPLE SURF
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based descriptors, and in many cases even outperformed those results with both generators.
However, the last two implementations (Rnd and GaussRnd) are additionally much more
efficient and light-weighted, since they strip the respective computational overhead that
the detectors (SIFT and SURF) introduce. An increase in the performance of the SIMPLE
rnd/gaussRnd-EHD descriptor is achieved. For the first time we managed to outperform the
global-EHD score, on the respective collection.

Table 4 Experimental Results of all 16 SIMPLE descriptors on the UCID dataset. MAP results in
bold fonts mark performances that surpass the baseline performance. Underlined results mark the
highest performance achieved per detector

SIFT detector SURF detector

Size WS MAP P@10 ANMRR WS MAP P@10 ANMRR

CEDD

2048 l.t.c 0.6571 0.2134 0.3098 l.t.c 0.7811 0.2595 0.1892
512 n.t.c 0.6636 0.2145 0.2961 l.t.c 0.7635 0.2531 0.2054
128 l.n.n 0.6813 0.2252 0.2704 l.n.n 0.7332 0.2447 0.2260
32 n.n.n 0.6088 0.1981 0.3455 l.n.c 0.6443 0.2141 0.3089

SCD

2048 l.t.c 0.7045 0.2332 0.2606 l.t.c 0.7718 0.2550 0.1968
512 l.t.c 0.7145 0.2378 0.2457 l.t.c 0.7648 0.2515 0.2010
128 l.n.n 0.7065 0.2351 0.2536 l.t.c 0.7275 0.2382 0.2355
32 n.n.c 0.6354 0.2042 0.3196 l.n.n 0.6450 0.2095 0.3118

CLD

2048 l.t.c 0.6305 0.2107 0.3287 l.t.c 0.7161 0.2393 0.2502
512 l.t.c 0.6304 0.2080 0.3304 l.n.n 0.6765 0.2225 0.2829
128 l.n.n 0.6233 0.2023 0.3335 l.n.n 0.6291 0.2073 0.3288
32 n.n.n 0.5243 0.1679 0.4344 n.n.n 0.5610 0.1809 0.3994

EHD

2048 l.n.c 0.4042 0.1130 0.5711 n.n.c 0.5030 0.1599 0.4600
512 l.n.n 0.4044 0.1115 0.5724 n.n.c 0.5066 0.1576 0.4609
128 n.n.c 0.4049 0.1126 0.5692 n.n.c 0.4973 0.1553 0.4644
32 n.n.c 0.4062 0.1145 0.5632 n.n.c 0.4682 0.1450 0.4948

Rnd 600 samples GaussRnd 600 samples

Size WS MAP P@10 ANMRR WS MAP P@10 ANMRR

CEDD

2048 l.t.c 0.7890 0.2626 0.1756 l.t.c 0.7955 0.2672 0.1752
512 l.t.c 0.7745 0.2527 0.1947 l.t.c 0.7834 0.2607 0.1797
128 l.t.c 0.7414 0.2427 0.2194 l.t.c 0.7367 0.2447 0.2247
32 l.n.n 0.6600 0.2183 0.2962 l.n.n 0.6725 0.2233 0.2852

SCD

2048 l.t.c 0.7794 0.2573 0.1892 l.t.c 0.7876 0.2611 0.1820
512 l.t.c 0.7610 0.2534 0.2016 l.t.c 0.7691 0.2573 0.1950
128 l.n.c 0.7233 0.2393 0.2382 l.t.c 0.7400 0.2427 0.2232
32 l.n.c 0.6443 0.2118 0.3110 l.n.n 0.6565 0.2179 0.2963

CLD

2048 l.t.c 0.7170 0.2359 0.2481 l.t.c 0.7191 0.2408 0.2425
512 l.t.c 0.6781 0.2176 0.2890 l.t.c 0.6820 0.2256 0.2800
128 l.n.n 0.6375 0.2118 0.3191 l.n.n 0.6356 0.2065 0.3266
32 l.n.n 0.5375 0.1763 0.4158 l.n.n 0.5560 0.1809 0.3975

EHD

2048 l.n.c 0.6557 0.2164 0.3057 l.n.c 0.6622 0.2198 0.2950
512 l.t.c 0.6186 0.2061 0.3409 l.t.c 0.6407 0.2092 0.3194
128 l.n.n 0.5666 0.1863 0.3920 l.n.n 0.5870 0.1931 0.3707
32 n.n.c 0.5041 0.1573 0.4590 n.n.c 0.5037 0.1538 0.4770

Results on UCID: On the UCID collection, 11 out of the 16 proposed SIMPLE descrip-
tors outperform the baseline non-SIMPLE descriptor.

In all cases, CEDD is involved in the best performing SIMPLE combinations, except
when employing SIFT. Again, when SIFT is involved, the high percentage of non-usable
patch sizes, leads to low performance scores for descriptors that introduce size limitations
(CEDD has the highest limitation of minimum 40x40 pixels patches).

SURF-based, Rnd-Based and GaussRnd-Based sample strategies perform similarly, for
all respective codebook sizes, when combined with CEDD, SCD or CLD. We would
like to underline that in this collection, SIMPLE rnd/gaussRnd-EHD performances, not
only present an impressive increase, but actually surpass the second-best non-SIMPLE
descriptor (kindly refer to Table 2). This allows us to assume, that the efficient SIMPLE
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rnd/gaussRnd-EHD descriptors, would prove to be competitive choices for similar datasets,
where no colour information is available.

Tables 5 and 6 present in a ranked manner, the % improvement of the metrics MAP, P@k
and ANMRR, that the proposed SIMPLE descriptors attained against the respective base-
line non-SIMPLE descriptor. In order to keep the tables concise, we only included the top
10 SIMPLE descriptors that best the baseline results in both collections. On UKBench, 27
descriptors with varying codebooks surpassed the baseline MAP score of 0.8159. Nine of
them managed to improve MAP by more than 12%, P@4 by more than 15% and ANMRR
by an impressive more than 53%. On UCID, 28 SIMPLE descriptors achieved a higher
MAP evaluation compared to the respective baseline (CEDD global) . The top six SIMPLE
descriptors improved MAP by more than 15%, P@10 by more than 13% and ANMRR by
more than 32%.

Table 5 The top 10 SIMPLE descriptors that surpass the baseline’s MAP score on UKBench.

BASELINE UKBench
Descriptor Size WS MAP P@4 ANMRR

SURF 512 l.n.n 0.8159 0.7730 0.1535
SIMPLE descriptors

%MAP %P@4 %AMNRR
Descriptor Size WS Improvement Improvement Improvement

SIMPLE rnd-SCD 2048 l.t.c 13.59 16.17 62.67
SIMPLE gaussRnd-SCD 2048 l.t.c 13.42 16.69 60.39
SIMPLE gaussRnd-CEDD 2048 l.t.c 13.31 16.82 57.33
SIMPLE gaussRnd-CEDD 512 l.t.c 13.09 15.65 59.35
SIMPLE gaussRnd-SCD 512 l.t.c 12.98 15.52 58.44
SIMPLE rnd-SCD 512 l.t.c 12.59 15.78 56.09
SIMPLE rnd-CEDD 2048 l.t.c 12.55 15.01 55.50
SIMPLE rnd-CEDD 512 l.t.c 12.10 14.75 53.94
SIMPLE srf-SCD 512 l.t.c 12.08 15.91 53.55
SIMPLE srf-CEDD 512 l.t.c 9.87 12.16 42.74

Table 6 The top 10 SIMPLE descriptors that surpass the baseline’s MAP score on UCID.

BASELINE UCID
Descriptor Size WS MAP P@10 ANMRR

CEDD Global 0.6748 0.2267 0.2823
SIMPLE descriptors

%MAP %P@10 %AMNRR
Descriptor Size WS Improvement Improvement Improvement

SIMPLE gaussRnd-CEDD 2048 l.t.c 17.89 17.87 37.94
SIMPLE rnd-CEDD 2048 l.t.c 16.92 15.84 37.80
SIMPLE gaussRnd-SCD 2048 l.t.c 16.72 15.17 35.53
SIMPLE gaussRnd-CEDD 512 l.t.c 16.09 15.00 36.34
SIMPLE srf-CEDD 2048 l.t.c 15.75 14.47 32.98
SIMPLE rnd-SCD 2048 l.t.c 15.50 13.50 32.98
SIMPLE rnd-CEDD 512 l.t.c 14.77 11.47 31.03
SIMPLE srf-SCD 2048 l.t.c 14.37 12.48 30.29
SIMPLE gaussRnd-SCD 512 l.t.c 13.97 13.50 30.92
SIMPLE srf-SCD 512 l.t.c 13.34 10.94 28.80

Table 7 The Standard Deviation of the best performing MAP scores after multiple runs (5) of the
SIMPLE rnd-SCD and gaussRnd-SCD, on both collections

Standard Deviation (600 samples)
UKBench UCID

Size Rnd GaussRnd Rnd GaussRnd
2048 0.004458 0.003389 0.002695 0.002743
512 0.005249 0.003422 0.003234 0.003206
128 0.006146 0.003767 0.003684 0.003595
32 0.008951 0.005187 0.004278 0.003801
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Overall, the light-weighted and efficient combinations of rnd and gaussRnd detectors
with SCD, CEDD and CLD descriptors dominated the top results for both collections. Con-
cerning the random-patches techniques, please note, that every time we tested a descrip-
tor for a given codebook size, newly extracted random patches were generated. In other
words, for the presented results in Tables 3 and 4 under ”Rnd (600 samples)” we generated
16 times, 600 random patches. The same applies for the GaussRnd experiments, as well.
This strategy was chosen deliberately, in order to test the robustness of the random based
implementations. However, we went on and further tested the robustness of these methods
by repeating the SIMPLE rnd-SCD and gaussRnd-SCD experiment multiple times (five).
The calculated standard deviations of the obtained MAP scores can be found in Table 7.

Table 8 MAP evaluations of SIMPLE rnd/gaussRnd-based descriptors, with 300 and 100 samples per
image.

UKBench UCID
300 samples

Rnd GaussRnd Rnd GaussRnd
CEDD 512 0.9087 0.9102 0.7657 0.7663
SCD 512 0.9025 0.9130 0.7526 0.7533
CLD 512 0.8484 0.8506 0.6529 0.6576

100 samples
Rnd GaussRnd Rnd GaussRnd

CEDD 512 0.8773 0. 8793 0.7394 0.7347
SCD 512 0.8770 0.8663 0.7421 0.7431
CLD 512 0.7086 0.7226 0.6019 0.6033

Studying the experimental results (Tables 3 and 4) and focusing on the two random sam-
pling techniques, we can see that introducing the Gaussian distribution for the localiza-
tion of the patches, allows for better performances in almost all combinations, which is
more evident as the codebook sizes shrink. Moreover, the results in Table 7 suggest that the
gaussRnd generator is a more robust approach, especially when employing small codebook
sizes. On a last note, we would like to comment that, as for any detection method, both rnd
and gaussRnd generators’ robustness is subject to the employed images. However, when
employing the UKBench collection, where the images are background clutter-free centred
depictions of objects, the gaussRnd generator which samples for patches more densely in
image centres, presents higher robustness compared to the rnd generator, whose standard
deviation doubles as we move to smaller codebook sizes.

Finally, we experimented with lower numbers of generated samples for our SIMPLE
descriptors that employ the rnd or gaussRnd patches’ generators. We tested for 300 samples
and 100 samples for combinations of rnd and gaussRnd with CEDD, SCD and CLD of 512
VWs codebooks, in both collections, evaluated by MAP. The experimental results that can
be found in Table 8, show that even with half the samples the performances are directly
comparable to those achieved when extracting 600 samples for the respective descriptors
and codebook. What is more interesting, is that satisfying MAP evaluations are reported
with as little as 100 image patches per image. However, we need to underline that these are
early results that need to be extended for more combinations, codebook sizes and types of
collections, in order to draw conclusive statements about appropriate sampling rates.

Wrapping up the results on the first two collections and in order to provide a wider
perspective on the achieved retrieval performances we collected some of the best reported
MAP scores for those collections. For the UKBench, our best performning descriptor SIM-
PLE gaussRnd-SCD scored a 0.9254 MAP evaluation. Further methods from the litera-
ture implemented and tested under the same querying mode are SURF 16-VLAD with a
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MAP=0.668, SIFT 64-VLAD MAP=0.804 [48], while some of the best reported methods
on this collection are [19] with a MAP=0.8780, [52] with a MAP=0.9070 and [53] with
MAP=0.9170.

In UCID, the best performing SIMPLE descriptor (gaussRnd-CEDD) achieves a MAP
score of 0.7955. SURF 64-VLAD has reportedly a MAP=0.6441 score, SIFT 64-VLAD a
MAP=0.6933 [48] and Local- SIFT Global Search achieves a MAP=0.625 evaluation [1].

Results on Holidays and ZuBud: Tables 9 and 10, present the experimental results of
the SIMPLE descriptors and results from methods from the literature on the two collec-
tions, respectively. The Holidays collection consists of images with diverse depictions of
scenery, landmarks, objects etc. and presents rotation, viewpoint and illumination chal-
lenges. We could roughly say that it is a collection with characteristics that land in-between
of those previously discussed datasets (UKBench and UCID). Again, the proposed descrip-
tors achieve a great increase of the retrieval performance compared to the performances of
the original methods they emerged from (Table 10: re-implemented). Furthermore, em-
ploying the random sampling strategies yield results that are directly comparable and often
outperform some of the much more sophisticated and complex methods from recent litera-
ture (Table 10: reported in literature).

Finally, the ZuBuD collection which is depicting urban scenery, uses query images
of smaller resolution, forcing descriptors that are not scale invariant to fail by default.
Thus, the former global descriptors gain significantly when localized through the SIMPLE
scheme. Furthermore, in this collection due to the specifics of the depictions (buildings
photographed up-close) the two POIs detectors, SURF and SIFT, locate a much higher
number of POIs compared to the other collections. However, even when dealing with im-
ages that present these repetitive patterns while also querying with smaller images, the
random samplers preserve their robustness, that is now verified for all four collections.

Table 9 MAP evaluations of the SIMPLE descriptors, on the Holidays and ZuBuD collections.

SURF SIFT Rnd (600) GaussRnd (600)
Holidays

CEDD 512 l.n.n 0.7733 l.n.n 0.7441 l.t.c 0.8048 l.t.c 0.8039
2048 l.t.c 0.7763 l.t.c 0.7335 l.t.c 0.8077 l.t.c 0.8172

SCD 512 l.n.n 0.7469 l.n.n 0.7506 l.t.c 0.7873 l.n.c 0.7807
2048 l.t.c 0.7531 l.n.n 0.7375 l.t.c 0.8042 l.t.c 0.7968

CLD 512 l.n.n 0.7375 l.n.n 0.7094 l.t.c 0.7507 l.t.c 0.7506
2048 l.t.c 0.7385 l.n.n 0.7126 l.t.c 0.7651 l.t.c 0.7629

EHD 512 n.n.c 0.6323 n.t.n 0.4919 l.n.c 0.6756 l.n.c 0.6732
2048 n.n.c 0.6271 n.n.n 0.4872 l.n.c 0.6816 l.n.c 0.6789

ZuBuD
CEDD 512 l.t.c 0.7901 l.n.c 0.6726 l.t.c 0.7675 l.t.c 0.7729

2048 l.t.c 0.834 l.t.c 0.6854 l.t.c 0.8338 l.t.c 0.8287
SCD 512 l.n.c 0.697 l.t.c 0.5451 l.t.c 0.7585 l.t.c 0.7687

2048 l.t.c 0.7453 l.t.c 0.5019 l.t.c 0.8287 l.t.c 0.8117
CLD 512 l.n.c 0.7921 n.t.c 0.5018 l.n.c 0.7529 l.n.c 0.7213

2048 l.t.c 0.8491 n.t.c 0.5931 l.t.c 0.8011 l.t.c 0.7995
EHD 512 n.n.c 0.2398 l.n.c 0.0539 l.n.c 0.1659 l.n.c 0.1549

2048 n.n.c 0.2906 l.n.c 0.0449 l.n.c 0.1815 l.n.c 0.1615

Analysing the weighting schemes’ impact

When an image is processed by the BOVW model, a histogram of the VWs that it contains
becomes its vector representation. This vector is weighted and normalized by the t f , d f
and normalization variants of the weighting schemes (WS).
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Table 10 MAP evaluations of state-of-the-art methods for the Holidays and ZuBuD collections.

Holidays ZuBuD
Re-implemented
CEDD global 0.7263 CEDD global 0.7226
SCD global 0.5369 SCD global 0.3508
CLD global 0.6480 CLD global 0.5874
EHD global 0.5551 EHD global 0.3819
OppHist global 0.6583 OppHist global 0.5809
SIFT BOVW-512/nnc 0.6914 SIFT BOVW-2048/nnc 0.6240
SURF BOVW-512/nnc 0.6777 SURF BOVW-2048/nnc 0.6131
SIFT(V) VLAD-64 0.7581 SIFT(V) VLAD-64 0.7582
SURF(V) VLAD-16 0.7169 SURF(V) VLAD-64 0.6922
Reported in Literature
Co-indexing[54] 0.8090 SIFT global search[2] 0.8130
Improving BoF [19] 0.8130 Color histogram[2] 0.7560
Asymmetric HE [55] 0.7940 LF patches histogram[2] 0.6470
Coupled Binary Embed[56] 0.7960 LF patches signature[2] 0.4260

The t f variant refers to the number of occurrences of a given VW in an image. Since the
histogram calculated by BOVW is exactly that (i.e. VW frequencies in the image), when
employing n.∗ .∗ weighting schemes we do not alter the weighting factor based on t f . On
the other hand, when employing l.∗ .∗ weighting schemes we suggest that relevance does
not increase proportionally with VW frequency. It is a well-known fact in information re-
trieval that a document with t f = 10 occurrences of a term is more relevant than a document
with t f = 1 occurrence of the same term, but not ten times more relevant.

The d f variant refers to the number of images in a collection that contain a given VW.
When employing ∗.n.∗ schemes we do not alter the vectors based on d f . When using ∗.t.∗
schemes, we suggest that when a VW is found in many images in the collection, then the
VW is rather general and hence is given a smaller weighting factor.

For the normalization of the vectors, ∗. ∗ .n refers to ”no normalization” while ∗. ∗ .c
schemes normalize the descriptors using cosine similarity, so that all image vectors turn
into unit vectors.

Figure 2 Weighting schemes’ MAP scores on UKBench. SIMPLE SCD descriptor with all four
detector for: a) codebook 2048, b) codebook 512, c) codebook 128, d) codebook 32
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Figure 3 Weighting schemes’ MAP scores on UCID. SIMPLE CEDD descriptor with all four
detector for: a) codebook 2048, b) codebook 512, c) codebook 128, d) codebook 32

For the purposes of this paper, Figures 2 and 3 present the behaviour of the 8 WS of
the best performing descriptor per collection (UKBench, UCID), combined with all four
detectors, for the four different codebooks[5].

Beginning the analysis with the t f variant, we have observed that for smaller codebooks,
the term ”l” (log-weighted term frequency) behaves better. Small codebooks involve high
term frequencies, making the use of the log frequency weight necessary. In larger code-
books, the use of the log frequency weight does not affect the results significantly. In Fig-
ures 2 [a] and 3 [a], where a large codebook is employed l.t.c scores comparable to n.t.c,
l.n.c comparable to n.n.c, and so on. On the other hand, as the codebooks get smaller in
graphs [c] and [d], weighting schemes that use the ”l” term perform significantly better.

Regarding the d f , for small codebooks due to the fact that there is a limited number of
VW available for indexing, most VW are found in multiple images. Thus, employing the
”t” term many VW are falsely credited with the same significance value and we notice a
degradation in performance (in both collections, graphs [d] show that l.n.c performs better
than l.t.c, the same for l.t.n and l.n.n, etc.). As the codebooks get larger the d f does not
seem to significantly alter the performances.

Finally, normalizing each vector by the cosine similarity so that all image vectors turn
into unit vectors, seems to add to the performance of methods with large codebook sizes.
This is justified by the fact that the use of larger codebooks produces descriptors with
greater length than smaller codebooks. Thus the benefits of the normalization are more
evident as the sizes grow.

Overall, the behaviour of the weighting schemes seems to be collection independent.
Methods that utilize large codebooks can benefit by weighting the produced descriptors
with an l.*.c weighting scheme or even an *.*.c scheme so as to reduce computational cost
with a small discount performance-wise. On the other hand, for small codebooks an l.n.*
weighting scheme will result in the best performance.
[5]resources in the form of spread sheets presenting all results are available upon request.
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Large-scale experiments

The common practice [39, 56, 21, 19, 57] to evaluate large-scale image retrieval perfor-
mance is to employ a large image database as distractors included in the retrieval database.
This is a strategy that allows the evaluation of the scalability of a method overcoming
the fact that there is not a publicly available large dataset with an assigned ground truth
for CBIR. The evaluation of a method is based on the retrieved ranked list of images per
query, compared to the initial collection’s ground truth. This means that retrieved images
that are part of the distractors are considered false results. The theme of the images used
as distractors, their resolution and possible artifacts caused by their encoding can bias the
evaluation.

With that being said, we populate the UKbench, UCID, Holidays, and ZuBuD datasets
with a random fraction of 100,000 images (distractors) of the MIR Flickr 1M dataset [58].
The MIR Flickr dataset was chosen because it has relevant depictions to three out of our
four initial collections (UCID, Holidays and to some degree with UKBench), it has the
same encoding (JPG) with half our collections (UKBench and Holidays) and a resolution
of the same order of magnitude with three of our datasets (only Holidays has a significantly
higher resolution).

We test and evaluate the best performing descriptors (CEDD and SCD) with all extrac-
tor combinations (SIFT, SURF, Rnd, GaussRnd) in all four datasets. The codebooks were
re-generated after randomly forwarding a 10% sample of extracted features from the com-
bined collections (UKBench+MIRFlickr, UCID+MIRFlickr, etc) to the k-means classifier.
This strategy ensures a more fair and realistic set-up, so as not to favour the description of
images belonging to the initial collections.

Table 11 MAP evaluations for the large-scale experiments with MIR Flickr image distractors.

UKBench UCID
+ +

Cb Dataset Distract. Loss Cb Dataset Distract. Loss
SIFT CEDD 512 0.8136 0.8072 0.8% 128 0.6813 0.6218 8.7%

SCD 512 0.8764 0.8208 6.3% 512 0.7145 0.6523 8.7%
SURF CEDD 512 0.8964 0.8712 2.8% 2048 0.7811 0.6951 11.0%

SCD 512 0.9145 0.8466 7.4% 2048 0.7718 0.6932 10.2%
Rnd CEDD 2048 0.9183 0.9009 1.9% 2048 0.7890 0.7001 11.3%

SCD 2048 0.9268 0.8869 4.3% 2048 0.7794 0.6981 10.4%
Gauss CEDD 2048 0.9245 0.8956 3.1% 2048 0.7955 0.7028 11.7%
Rnd SCD 2048 0.9254 0.8884 4.0% 2048 0.7876 0.7066 10.3%

Holidays ZuBuD
+ +

Cb Dataset Distract. Loss Cb Dataset Distract. Loss
SIFT CEDD 512 0.7441 0.7082 4.8% 2048 0.6854 0.6422 6.3%

SCD 512 0.7506 0.7064 5.9% 512 0.5451 0.5173 5.1%
SURF CEDD 2048 0.7763 0.7528 3.0% 2048 0.8340 0.7567 9.3%

SCD 512 0.7531 0.7237 3.9% 2048 0.7453 0.6900 7.4%
Rnd CEDD 2048 0.8077 0.7633 5.5% 2048 0.8338 0.7744 7.1%

SCD 2048 0.8042 0.7462 7.2% 2048 0.8287 0.7626 8.0%
Gauss CEDD 2048 0.8172 0.7545 7.7% 2048 0.8287 0.7731 6.7%
Rnd SCD 2048 0.7968 0.7277 8.7% 2048 0.8117 0.7571 6.7%

Table 11 summarizes the experimental results per dataset. Overall the proposed descrip-
tors present robust retrieval performances.

The average loss in performance for the UKBench, Holidays and ZuBuD collections is
only 3.8%, 5.8%, 7.1% respectively, while even when challenged with distractors, the cal-
culated performances in many cases exceed the baseline (non-SIMPLE) descriptors without
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distractors. A higher loss is reported for the UCID collection with an average 10.3% degra-
dation. However again, the absolute performances in the large scale experiments match or
even exceed the performances of the baselines without distractors.

In order to test how the scalability of the proposed localized descriptors compares to
that of the methods they originated from, we performed the large-scale scenarios for the
original CEDD and SCD methods. CEDD reported a loss of 6.95% in UKBench, 15.64%
in Holidays, 8.18% in ZuBuD and 20.96% in UCID. For the SCD descriptor the losses
were 12.32%, 15.03%, 14.70% and 24.12%, respectively.

It is evident through the results that the retrieval accuracy of the proposed methods as the
datasets scale up, not only remains sufficiently high in absolute numbers but, more impor-
tantly, also significantly outperforms the scalability of the original methods, validating the
overall robustness and reliability of the scheme.

Discussion and future work
Through our experimental results we verified that the proposed scheme for localizing the
discrimination ability of the compact MPEG-7 and MPEG-7-like global descriptors, is an
effective strategy for CBIR. A significant boost of their retrieval performance is reported
not only compared to their original global form but moreover, the proposed local features
tested in the most straightforward retrieval model, perform comparably and even outper-
form some of the most recently proposed retrieval models that base their success in much
more complex data manipulations.

Regarding the sampling strategies, we explored two different directions; first we em-
ployed two POIs detectors from the literature (SIFT and SURF) that search for salient
textural information in an image, in multiple scales and then we introduced two differ-
ent generators that randomly extract multiscale random image patches. Through the ex-
perimental results we observed that detection mechanisms based on texture saliency are
successful when combined with descriptors that vectorize colour information, since they
achieve colour description of POIs with textural attention. However, depending on the em-
ployed description method, this strategy can potentially suffer if the extracted patches are
too small to be treated by the descriptors.

The success of the random generators, on the other hand, is most likely associated with
the fact that in CBIR we are not always interested in one-to-one matching of points between
images. We examined this allegation by employing four different image collections which
vary both in depiction and in relevance association. In many cases the useful information
is not constrained at textured image parts. Searching exclusively for salient texture parts,
limits the retrieval effectiveness. Additionally, it was found that even though the distribution
of POIs from blob detectors follows no particular pattern when seen per image, over a
large number of images the overall distribution has a Gaussian-like behaviour. The random
sampling strategies furthermore allow us to have much better control over the number of
patches and their sizes, are light-weighted and can be adjusted depending on the available
computational resources. Even though the tests conducted are preliminary at this stage,
sampling with as little as 100 samples per image performs promisingly enough to be further
examined. The number of extracted patches can affect vastly the overall usability of a
method. Extracting a high number of patches per image (for instance following a dense
sampling strategy) could make a method more robust but demands extensive use of memory
and storing resources making it impractical for large scale retrieval scenarios.
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Regarding the description parameters that should be selected for CBIR tasks, and al-
though they are heavily subject to the images involved, we confirmed that quantized, com-
pact representations of image features allow for better retrieval performances. The abstract
representation allows for faster and safer comparisons of similarities between images be-
cause the discrete domain of features minimizes classification errors. Moreover, due to the
massive amount of data that is usually involved in CBIR, compact descriptions are imper-
ative when computational resources are limited.

Finally, weighting the descriptors with eight different weighting schemes and analysing
their impact, gave us useful insight into the relationship of codebook sizes and local fea-
tures. Having employed four very different kinds of image collections, four description
methods and four different codebook sizes ranging from a tiny 32 VWs codebook up to
a much wider 2048 VWs codebook, the experimental results suggest that the preferred
weighting scheme strategy is collection and feature-type independent, and should be se-
lected based on the size of the codebook. An other interesting direction worth exploring,
left for future work, is testing the impact on the retrieval performance of different distance
metrics. This type of investigation demands an in-depth study of multiple parameters such
as the chosen representation (feature generation), the distribution of the data, the represen-
tation’s dimensionality and the detected variance per dimension.

Currently we are expanding the SIMPLE family by varying the aggregation model and
the description methods. More specifically, we employ the VLAD model as a BOVW al-
ternative and test four different global descriptors that are evaluated based on their length,
content and type of attributes their description is based upon. Early results confirm that
global descriptors that are compact, quantized and carry color information are success-
fully localized through the SIMPLE scheme while the introduction of VLAD, although not
outperforming the respective BOVW implementations achieves directly comparable per-
formances with tiny codebooks of 16 or 64 clusters, eliminating simultaneously the need
of applied weighting schemes.

Conclusions
In this paper, we explored, extended and simplified the SIMPLE family of local features’
descriptors. We combined four sampling strategies, with four global features’ descriptors,
in a BOVW architecture and evaluated the produced descriptor in four diverse, popular
image collections so as to (i) minimize the case that good achieved performances might
have to do with specificities of the database and (ii) allow the comparison of the proposed
method to many others from the literature that might have been left out in this work.

The primary scope of this study was to investigate how the parameters of a CBIR sys-
tem (points-of-interest detection, description mechanisms, codebook sizes and weighting
strategies) can best be selected to serve specifically for the needs of retrieval tasks. We built
our design strategy keeping in mind the usability of the proposed descriptors in terms of
scalability, compactness, efficiency and effectiveness and were rewarded with a set of very
promising local feature descriptors that hit the mark on all of them.

We strongly encourage the incorporation of these light-weighted local features into dif-
ferent retrieval systems, the experimentation with collections varying in domain, relevance
assumption or scale and overall the expansion of the SIMPLE family, and thus we pro-
vide open source implementations in C#, Java and MATLAB (http://tinyurl.com/SIMPLE-
Descriptor). Furthermore, all descriptors are part of the LIRE library [48] and can be used
under the GNU GPL license.
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