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Abstract—In this paper a novel approach for solving two-
dimensional puzzles and assembling the puzzle using the IR52c
robotic arm is presented. When compared to many classical
methods for resolving puzzles, the proposed method is charac-
terized by low computational cost and ease of development. In
order to achieve shape recognition, classical techniques from the
field of image processing are combined with pattern association
techniques. A camera captures an image of the whole disas-
sembled puzzle, whose pieces are scattered in the working area
of the robotic arm. In the first step, this image is converted
to a binary form using Otsus method. Then, the connected
components are identified and their inclination is corrected. In
order to achieve recognition of every single shape, Morphological
Associative Memories (MAMs) that have been previously trained
are used. After object recognition, the system communicates with
the robotic arm to assemble the pieces of the puzzle. Experimental
results demonstrate the effectiveness of the proposed method.

I. INTRODUCTION

Sensorimotor architectures for automatic puzzle solvers try
to address the challenges by making significant progress in
several layers of abstraction [1]. While different architectures
and systems have been proposed, the main core systems are
common; Automatic puzzle solvers strongly depend on object
recognition. Over the last decade, a number of techniques
have been proposed in the literature which has led to the
understanding that algorithms for object recognition must be
scale, rotation, and transformation invariant. The vast majority
of the state of the art methods for object recognition is based
on shape descriptors. However, the challenging task of shape
descriptors is the accurate extraction and representation of
shape information.

Among the most commonly used shape detectors are the
image moments [2], [3]. The MPEG-7 [4] also includes shape
descriptors [5]. The overall performance of shape descriptors
can be divided into qualitative and quantitative performance.
The qualitative characteristics involve their retrieval perfor-
mance based on the captured shape details for representation.
Their quantitative performance includes the amount of data
needed to be indexed in terms of number of descriptors, in
order to meet certain qualitative standards, as well as their
retrieval computational cost [6].

In order to achieve shape recognition, local features may
also be used. A very popular feature extraction algorithm is the
scale-invariant feature transform (SIFT) proposed in [7]. SIFT

extracts feature points from training objects and stores them in
a database. On new images, a feature vector is extracted and
is compared using Euclidean distance to the feature vectors in
the database. SIFT is invariant to scale, orientation and affine
distortion and is partially invariant to illumination changes.

Bay et al. [8] proposed a feature extraction algorithm SURF
(Speeded Up Robust Features). SURF is claimed to be faster
than SIFT and uses an approximation of the Haar Wavelet of
the determinant of Hessian blob detector. GLOH (Gradient
Location and Orientation Histogram) [9] extends SIFT by
changing the location grid and using principal components
analysis (PCA) to reduce the high dimensionality of the
descriptor. GLOH is designed to increase the robustness and
distinctiveness of the SIFT descriptor. Local Energy based
Shape Histogram (LESH) is a feature that uses a local energy
model of feature perception [10]. The underlying shape is
encoded with the accumulating local energy of the underlying
signal after several filter orientations. In this way many local
histograms are extracted and then are used to form a 128-
dimensional compact spatial histogram. LESH is scale invari-
ant.

In the past, several content based image retrieval (CBIR)
techniques have been adopted in robot grasping systems to
facilitate object recognition [1],[11],[12]. In this paper, a
new CBIR method which adopts Morphological Associative
Memories (MAMs) is proposed. In Section 2 MAMs are
described in detail. The proposed system implements classic
digital image processing techniques in order to solve the
puzzle using the IR52c robotic arm. The puzzle consists of
n wooden pieces of which only m (m ≤ n) are considered
beneficial. The n parts are located in a random position but
within the working space of the arm. Actually the center of
gravity of each object should be inside the working space. The
image is taken from a web camera which is located at height of
1.30 m. After the puzzle pieces have been identified, they are
placed at specified positions. The entire system is described
in detail in Section III and the conclusions are presented in
Section IV.

II. MORPHOLOGICAL ASSOCIATIVE MEMORIES

Morphological Neural Networks (MNNs) represent artifi-
cial neural networks whose neurons perform an elementary
operation of mathematical morphology [13], [14]. Unlike
Hopfield networks [15], MNNs provide the result in a single



pass through the network, without any significant amount of
training. The underlying algebraic system used in these models
is the set of real numbers IR together with the operations
of addition and multiplication and the laws governing these
operations. The basic computations occurring in morpholog-
ical networks are based on the algebraic lattice structure
(R,+,∧,∨) , where ∧,∨ denote the binary operations for
minimum and maximum, respectively.

Morphological associative memories (MAMs) are based on
the algebraic lattice structure [16] (R,+,∧,∨). They were
initially proposed for associating binary pattern vectors [17]
and are far more robust to noise than the conventional linear
associative memories.

There are two basic approaches to record k vector pairs
(x1, y1), . . . , (xk, yk) using a morphological associative mem-
ory. The first approach consists of structuring an m×n matrix
Wxy with elements computed by:

wij =
r=1
∧
k
(yri − xrj) i = 1, . . . ,m j = 1, . . . , n. (1)

The dual approach consists of constructing an m × n matrix
Mxy with elements:

mij =
r=1
∨
k
(yri − xrj) i = 1, . . . ,m j = 1, . . . , n. (2)

If matrix Wxy receives a vector xr as input, the product yr =
Wxy⊗xr is formed. The product is called max product and
each element of the resulting vector yr is computed by the
formula:

yri =
n
∨

j=1
(wij + xrj) i = 1, . . . ,m j = 1, . . . , n. (3)

Likewise, if matrix Mxy receives xr as input the so-called
min product yr = Mxy⊗xr is formed, where each element
of the resulting vector yr is computed by the formula:

yri =
n
∧

j=1
(mij + xrj) i = 1, . . . ,m j = 1, . . . , n. (4)

Matrices Wxy and Mxy, computed by Eqs. 1 and 2
respectively, constitute the memory of the MAM. The only
required training of the network is simply the computation of
either of the two matrices W or M. The difference between
the two memories arises when noisy patterns appear at their
input. Memory Mxy is able to retrieve yr in case a noisy
vector xr corrupted by dilative noise appears at its input, while
memory Wxy is able to retrieve yr in case an eroded version
of the input pattern appears at its input.

Ritter et.al. proposed the idea of two-step MAMs and
the production of the so-called kernel vectors, as an elegant
representation of the associations (xr, yr). The conditions for
a vector z to be a kernel vector are given in [17]. These
vectors, in conjunction with matrices M and W, are suitable
for recalling yr when an arbitrarily corrupted (both eroded
and dilated) input pattern appears at the input of the MAM. A
binary vector z is said to be a kernel of the association (x, y)

between the vectors x and y if it is a subset of x and satisfies
the following conditions:

Mzz ⊕ x = z (5)

Wzy ⊗ z = y (6)

Where matrices Mzz and Wzy are computed according to
Eqs. 1 and 2. In case of autoassociation Eqs. 5 and 6 are
written as:

Mzz ⊕ x = z (7)

Wzx ⊗ z = x (8)

When an arbitrarily computed input pattern appears at the
input of a morphological auto associative network, the original
uncorrupted input pattern x is recalled by the following
equation:

Wzx ⊗ (Mzz ⊕ x̃) = x (9)

III. SYSTEM OVERVIEW

The proposed system is designed to solve a puzzle whose
pieces are randomly distributed around the workspace of a
robotic arm. The puzzle consists of n pieces of which only m
(m ≤ n) are considered beneficial.

An image which includes all the puzzle pieces is taken
from a still camera located 1.3 m above the puzzle plane. In
the initial stage, the image is converted from RGB to Y IQ
color space. The auto brightness correction method proposed
in [18] is applied to the Y channel. This method is partially
inspired by the HVS (Human Vision System). In particular, the
method adopts some of the shunting characteristics of the on-
center off-surround networks, in order to define the response
function for a new artificial center-surround network. This
network compares every pixel to its local average and assigns
a new value in order to lighten the dark image regions, while
minimally affecting the light regions. The aim of this filter
is to cover alterations in brightness that might result from the
settings of the instrument used to capture the image. The same
auto brightness correction approach has also been adopted
as preprocessing step in several image retrieval systems (e.g.
[19]).

Then, the image is converted to binary using the Otsu
method. This step is necessary prior to extracting and labeling
all connected components. The algorithm assumes that the
image to be thresholded contains two classes of pixels (i.e.,
foreground and background) then calculates the optimum
threshold separating those two classes so that their combined
spread (intra-class variance) is minimal.

The goal then is to select the threshold that minimizes the
combined spread. We can define the within-class variance as
the weighted sum of the variances of each cluster:

σ2
Within(T ) = nB(T )σ

2
B(T ) + nO(T )σ

2
O(T ), (10)

where

nB(T ) =

T−1∑
i=0

p(i) (11)
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Fig. 1. Possible Rotation Angles. Angle of blob (a): 40◦; Angle of blob (b): 40◦; Angle of blob (c): −40◦; Angle of blob (d): −40◦.

nO(T ) =

N−1∑
i=t

p(i) (12)

and σ2
B(T ) the variance of pixels in the background (below

threshold), σ2
O(T ) the variance of pixels in the foreground

(above threshold) and [0, N − 1] the range of intensity levels.
If one subtracts the within-class variance from the total

variance of the combined distribution, you get something
called the between-class variance:

σBetween(T ) = σ2 − σ2
Within(T )

= nB(T )[µB(T )− µ]2 + nO(T )[µO(T )− µ]2
(13)

where σ2 is the combined variance and µ is the combined
mean. Notice that the between-class variance is simply the
weighted variance of the cluster means themselves around the
overall mean. Substituting µ = nB(T )µB(T ) + nO(T )µO(T )
and simplifying results in:

σBetween(T ) = nB(T )nO(T )[µB(T )− µO(T )]
2 (14)

For each potential threshold T:
1) Separate the pixels into two clusters according to the

threshold.
2) Find the mean of each cluster.
3) Square the difference between the means.
4) Multiply by the number of pixels in one cluster times

the number in the other.
This depends only on the difference between the means of

the two clusters, thus avoiding having to calculate differences
between individual intensities and the cluster means. The
optimal threshold is the one that maximizes the between-class
variance (or, conversely, minimizes the within-class variance).
The implementation of the Otsu method is based on the
img(Rummager) [20] implementation.

In order to separate the image of each puzzle piece for the
subsequent identification, we used a proprietary implementa-
tion of the OPENCV library. This implementation is a linear-
time component-labeling algorithm using a contour tracing
technique to detect objects in an image. This algorithm not
only labels components but also extracts component contours
and sequential orders of contour points, which can be useful
for many applications. The main step of this algorithm is to
use a contour tracing technique to detect the external contour

and possible internal contours of each component, and also to
identify and label the interior area of each component.

This method labels each component using a contour tracing
technique. This method is based on the principle that a com-
ponent is fully determined by its contours, just as a polygon
is fully determined by its vertices. This method also provides
a procedure for finding all component pixels.

This algorithm has 4 key points:
• Algorithm visits each pixel a constant number of times.
• Algorithm runs in linear time.
• All pixels in the same component are assigned the same

label.
• Pixels in different components are assigned different

labels.
The algorithm has several advantages. First, it requires only
one pass over the image. Contour points are visited more than
once due to the aforementioned contour tracing procedure, but
no more than a constant number of times. Second, it does not
require any re-labeling mechanism. Once a labeling index is
assigned to a pixel, its value is unchanged. Third, we obtain
as by-products all contours and sequential orders of contour
pixels. Fourth, experimental results show that our algorithm
is faster than traditional component-labeling algorithms and
improves performance dramatically.

After this image separation process, we extract and label
all the connected components forming the blobs. Each blob is
the binary image of each puzzle piece. To be able to recognize
each item, a rotation correction algorithm must be applied to
each blob since MAMs are not rotation independent.

The algorithm we used to extract and label connected
components gives us some characteristics such as the location
of the blob, rotation angle and center of gravity. The value
of the rotation angle is between [−90, 90]. For example, the
rotation angle of a piece may be in one of the 4 different
positions as illustrated in Fig. 1.

Correcting the rotation angle to 90 degrees will have results
shown in either Fig. 2(a) or Fig. 2(b).

Matrices M and W that were described in Section II have
been computed offline. Binary images of the letters that are
included at the puzzle, were used as inputs of the system,
as they were captured from the systems camera. Artificially
generated binary images were used as associate images. For
every kernel that was extracted from the input images, a
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Fig. 2. Correcting the rotation angle. (a): Rotation angle 90◦ for the blobs
of Fig. 1(a) and 1(c), (b): Rotation angle 90◦ for the blobs of Fig. 1(b) and
1(d).

different associated image was used.
These associated images differed by as little as a single

pixel. As a result of the process mentioned in Section II, when
a noisy is used as input to the system, MAMs will return
to the user the associate images that were used during the
training process of the system. After scanning this image pixel-
by-pixel, a descriptor with binary values is extracted. This
new descriptor is called Morphological Associative Descriptor
(MAD).

After the puzzle pieces have been identified, they are placed
at specified positions. The specified positions are stored in an
XML database with entries for each piece that include the
following properties:

1) Letter ID
2) Morphological Associative Descriptor (MAD)
3) Final Position X
4) Final Position Y
5) Boolean (0 or 1) value that defines if the specific letter

is part of the puzzle

For every blob that is used as input to the system, a
MAD descriptor is extracted and then compared to the MAD
descriptors stored in the XML file. Because MAD descriptors
are binary vectors, in order to calculate the distance between
two descriptors, a single XOR logic gate is used. If a blobs
MAD descriptor distance to a MAD descriptor in the XML
file is zero, the system can identify whether that blob is part
of the puzzle from the stored Boolean value and, if so, retrieve
the final position X and Y. In order to avoid an error produced
during the correction of the rotation angle, the XML database
contains information concerning every piece of the puzzle and
the symmetric of this piece.

After each shape is recognized, the coordinates of the
current and final locations are sent to the robotic arm. The
rotation angle of each object is found from the method used
to calculate how many degrees each blob should rotate in order
to avoid the problem of improperly functioning MAMs. Note
that when one of the normalized blobs is identified as a known
figure, the rotation angle of the blob is (90◦ − blob angle). If
a blob corresponds to the symmetric form of a known shape,
the rotation angle of the object is (90◦ − blob angle) + 180◦.

IV. EXPERIMENTAL RESULTS

Initially, to evaluate the performance of the MAD descriptor,
a number of simulated experiments were carried out. In order
to have a meaningfully sized data set, 26 uncorrupted binary
patterns were initially created. The set contains the 35 × 34
binary images of the capital letters of the Latin alphabet and
is shown in Fig. 4. Please note that the same dataset has also
been used in [21]. The MAD descriptor of these pattern has
been extracted and stored in the XML database of the system.

Next, we evaluated the ability of the presented descriptor
to accurately retrieve the correct pattern. The Morphological
Associative Descriptor of all the 26 patterns was re-calculated
and each one of them compared (by employing a simple XOR
gate) with the entire database of the system. As expected, the
system performed a 100% success in recalling in right pattern
in all the cases. Next, mixed type (both dilative and erosive)
of noise was randomly applied on each binary image. The
noise percentage is computed by counting the number of the
altered (noisy) pixels and divide them with the total number of
image pixels. For each pattern, we applied 5 different levels of
random noise (10, 30, 40, 50 and 60 %). Each experiment was
repeated 100 times. In other words, for each Latin character,
we reproduced 100 noisy images for each noise level. Overall,
we evaluated the performance of MAD descriptor using 13000
(26 (letters) × 5 (noise levels) × 100 (samples)) query images.
As illustrated in Table 1, the MAD descriptor is capable to
accurately recall by 100% the correct pattern even in cases
with 30% noise. Moreover, it is worth noting that even in
cases with appearance of 60% of noise, the presented approach
achieves a 33% accuracy.

TABLE I
MAD EVALUATION RESULTS IN CASE OF NOISY PATTERNS

Noise Levels 10% 30% 40% 50% 60%
No Rotation 100% 100% 85% 72% 33%
Rotated Images 92% 87% 64% 51% 27%

In the sequel, a preprocessing step was performed to deter-
mine the robustness of the proposed approach. Each one of the
query image was rotated by three different randomly generated
angles. The set of 3 × 13000 images was used to evaluate
the ability of the proposed approach to automatically correct
the rotation of the input samples. As depicted in Table 1, the
rotation correction approach, in combination with the MAD
descriptor, manage to achieve an impressive 87% accuracy
even in cases of 30% appearance of noise.

Finally, the proposed system has been tested as a whole with
an IR52c robotic arm. The experimental setup is illustrated in
Fig. 5. The robot’s task is to recognize the letters D,U,T and
H, to locate their position and of course, to move them into the
desirable location. It is worth noting that the desirable location
of each letter, the correct orientation as well as the appropriate
grasping position are known to the robot. Its main objective
is to recognize, based on their shape, the letters.

A low cost web-camera (mounted 1.3 meter above the robot)
captures an image of the whole disassembled puzzle, whose



Fig. 3. System Pipeline Overview.

Fig. 4. The complete evaluation set consisting of 26 binary images of the
capital letters of Latin alphabet

pieces are scattered in the working area of the robotic arm. The
captured image is analyzed by the system (Fig. 6). Initially,
the auto brightness correction method enhances the quality
of the image and the Otsu binarization algorithm convert the
improved capture into a binary one. The component labeling
module, together with the blob formation one, identifies the
letters’ area and their location. In the sequel, the rotation
correction module automatically rotates each letter to the
desirable orientation. Next, the MAD descriptor is extracted
from each blob and based on the stored information, the letter
is recognized. Finally, the robotic arm retrieves details from
the database about the desirable location and the orientation
of each letter.

The experimental results have shown that the system is
capable of successfully recognizing and solving the puzzle.
The experiment was repeated several times with the same
results, under different lighting conditions

V. CONCLUSIONS

In this paper a low cost method for solving 2D puzzles
using Morphological Associative Memories is proposed. The
proposed system implements classic digital image processing
techniques in order to solve the puzzle using the IR52c robotic
arm. The puzzle consists of n wooden pieces of which only
m (m ≤ n) are considered beneficial. The n parts are located
in random positions but within the working space of the

arm. Actually the center of gravity of each object should be
inside the working space. Puzzle pieces are placed at specified
positions. Experimental results showed that the system is
capable of working properly and can recognize puzzle pieces
and construct the puzzle successfully.
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